AMD-AIM Bibliography

2023 Innovation Fund Project#42945

Bibliography

  1. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629–655 (2022).
  2. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. https://apo.org.au/node/63983 (2016).
  3. Tyers, M. & Wright, G. D. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17, 141–155 (2019).
  4. World Health Organization. Antibacterial agents in preclinical development: an open access database.
  5. World Health Organization. 2019 antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. (2019).
  6. Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov. 20, 145–159 (2021).
  7. Zoffmann, S. et al. Machine learning-powered antibiotics phenotypic drug discovery. Sci. Rep. 9, (2019).
  8. Nonejuie, P., Burkart, M., Pogliano, K. & Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl. Acad. Sci. U. S. A. 110, 16169–16174 (2013).
  9. Sridhar, S. et al. High-Content Imaging to Phenotype Antimicrobial Effects on Individual Bacteria at Scale. mSystems 6, e00028-21.
  10. Anglada-Girotto, M. et al. Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nat. Chem. Biol. 1–10 (2022) doi:10.1038/s41589-022-00970-3.
  11. O’Rourke, A. et al. Mechanism-of-Action Classification of Antibiotics by Global Transcriptome Profiling. Antimicrob. Agents Chemother. 64, (2020).
  12. Stokes, J. M. et al. A Deep Learning Approach to Antibiotic Discovery. Cell 180, 688-702.e13 (2020).
  13. Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I. & Miller, A. A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 14, 529–542 (2015).
  14. Peters, J. M. et al. Enabling Genetic Analysis of Diverse Bacteria with Mobile-CRISPRi. Nat. Microbiol. 4, 244–250 (2019).
  15. Canada, P. H. A. of. Canadian Antimicrobial Resistance Surveillance System – Update 2020. aem https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2020-report.html (2020).
  16. Baym, M., Shaket, L., Anzai, I. A., Adesina, O. & Barstow, B. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. Nat. Commun. 7, 13270 (2016).
  17. Peters, J. M. et al. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell 165, 1493–1506 (2016).
  18. Bilodeau, A. et al. Microscopy analysis neural network to solve detection, enumeration and segmentation from image-level annotations. Nat. Mach. Intell. 4, 455–466 (2022).
  19. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 1–7 (2016).
  20. Cellpose: a generalist algorithm for cellular segmentation | Nature Methods. https://www.nature.com/articles/s41592-020-01018-x.
  21. Spahn, C. et al. DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Commun. Biol. 5, 1–18 (2022).
  22. Chandrasekaran, S. N. et al. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. http://biorxiv.org/lookup/doi/10.1101/2022.01.05.475090 (2022) doi:10.1101/2022.01.05.475090.
  23. Pratapa, A., Doron, M. & Caicedo, J. C. Image-based cell phenotyping with deep learning. Curr. Opin. Chem. Biol. 65, 9–17 (2021).
  24. Caicedo, J. C., McQuin, C., Goodman, A., Singh, S. & Carpenter, A. E. Weakly Supervised Learning of Single-Cell Feature Embeddings. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2018, 9309–9318 (2018).
  25. Zahir, T. et al. High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Commun. Biol. 2, 1–13 (2019).
  26. Weill, U. et al. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat. Methods 15, 617–622 (2018).
  27. Guo, W., Wang, J. & Wang, S. Deep Multimodal Representation Learning: A Survey. IEEE Access 7, 63373–63394 (2019).
  28. Giguère, S. et al. Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery. PLOS Comput. Biol. 11, e1004074 (2015).
  29. Zhou, J. et al. Graph neural networks: A review of methods and applications. AI Open 1, 57–81 (2020).
  30. Duran-Frigola, M. et al. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat. Biotechnol. 1–10 (2020) doi:10.1038/s41587-020-0502-7.
  31. Sterling, T. & Irwin, J. J. ZINC 15 – Ligand Discovery for Everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).
  32. Grygorenko, O. O. et al. Generating Multibillion Chemical Space of Readily Accessible Screening Compounds. iScience 23, 101681 (2020).
  33. How DNA-encoded libraries are revolutionizing drug discovery. Chemical & Engineering News https://cen.acs.org/articles/95/i25/DNA-encoded-libraries-revolutionizing-drug.html (2017).
  34. Madsen, D., Azevedo, C., Micco, I., Petersen, L. K. & Hansen, N. J. V. An overview of DNA-encoded libraries: A versatile tool for drug discovery. Prog. Med. Chem. 59, 181–249 (2020).
  35. Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 3, 1023–1032 (2021).
  36. Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl. Acad. Sci. 109, E2774–E2783 (2012).
  37. Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).
  38. Luro, S., Potvin-Trottier, L., Okumus, B. & Paulsson, J. Isolating live cells after high-throughput, long-term, time-lapse microscopy. Nat. Methods 17, 93–100 (2020).
  39. Zimmer, C. The New Science of Evolutionary Forecasting. Quanta Magazine https://www.quantamagazine.org/can-scientists-predict-the-future-of-evolution-20140717/ (2014).
  40. García-Nafría, J. & Tate, C. G. Cryo-Electron Microscopy: Moving Beyond X-Ray Crystal Structures for Drug Receptors and Drug Development. Annu. Rev. Pharmacol. Toxicol. 60, 51–71 (2020).
  41. Ceska, T., Chung, C.-W., Cooke, R., Phillips, C. & Williams, P. A. Cryo-EM in drug discovery. Biochem. Soc. Trans. 47, 281–293 (2019).
  42. Renaud, J.-P. et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov. 17, 471–492 (2018).
  43. Horwood, J. & Noutahi, E. Molecular Design in Synthetically Accessible Chemical Space via Deep Reinforcement Learning. ArXiv200414308 Phys. Stat (2020).
  44. Paquette, A. R. et al. RpoN-Based stapled peptides with improved DNA binding suppress Pseudomonas aeruginosa virulence. RSC Med. Chem. 13, 445–455 (2022).
  45. Hennemann, L. C. et al. LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog. 17, e1009375 (2021).
  46. LaFayette, S. L. et al. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci. Adv. 1, e1500199 (2015).
  47. Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).
  48. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).
  49. Lewis, K. The Science of Antibiotic Discovery. Cell 181, 29–45 (2020).
  50. Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).
  51. Nyongesa, S. et al. Evolution of multicellular longitudinally dividing oral cavity symbionts (Neisseriaceae). Preprint at https://doi.org/10.21203/rs.3.rs-1200288/v1 (2022).
  52. Council of Canadian Academies. When Antibiotics Fail: The Expert Panel on the Potential Socio-Economic Impacts of Antimicrobial Resistance in Canada. (2019).
  53. There’s a big data expert shortage in Canada, but does your company really need one? | IT World Canada News. https://www.itworldcanada.com/article/lack-of-big-data-expertise-hamper-canadian-firms/102036 (2015).